Summary

- Synthetic Biotic medicines are live, non-pathogenic E. coli Nissle (EcN) bacteria designed with drug-like properties.
- Our synthetic biology platform allows the engineering of probiotic strains with versatile and disparate modalities that can sense and influence inflammatory pathways in vivo including:
 - In vivo environmental biosensors that detect inflammatory signals, e.g., nitrate
 - Short chain fatty acid production that can alter inflammatory signaling
 - Production and secretion of human proteins, including cytokines
- These innovations are key to the development of gut-targeted therapeutics for inflammation-based pathologies such as Inflammatory Bowel Disease (IBD).

EcN protein expression is engineered to respond to environmental signals in vivo

Figure 1. Design and induction of a biosensor strain engineered to constitutively express mCherry and express GFP upon sensing an in vivo environmental signal. **B.** In vitro FACS analysis of a biosensor EcN strain responding to low oxygen conditions (FpO = 1%r promoter).

Figure 2. EcN expresses fluorescent reporter protein under environmentally inducible promoter. Naïve C57BL/6 mice orally gavaged with 1x10^7 EcN CFU that constitutively express mCherry and express GFP under an environmentally inducible promoter. Colon tissue was collected 4hr post dose and embedded in paraffin wax. Mouse colon tissue was then stained for mCherry expression(red) and for GFP expression (green) via fluorescence imaging. Fluorescent image of mouse colon tissue stained for mCherry and GFP expression controlled by a temperature inducible promoter (A), a low oxygen inducible promoter (B), or a nitrate inducible promoter (C).

Figure 3. Schematic of EcN-Lac. The lactate producing strain was engineered by removing the pto gene from the acetate producing pathway and introducing a plasmid containing the E. coli ilvA gene under the control of an inducible promoter. **B.** Schematic of SCFA metabolic pathways that can be altered for SCFA production. Red Xs denote possible genes modified for a butyrate producing strain. C. In vitro measurement of excess SCFAs produced from engineered EcN strains compared to wild type EcN. Dark blue var denotes EcN-Lac.

Figure 4. Mouse study design. 1x10^7 CFU EcN-Lac were gavaged into wild type mice daily for 3 days prior to anti-CD3 treatment. After 24 hrs, mice were sacrificed and colons were harvested. B. % of Foxp3+ Treg clones present in the colon. C. Gene expression in the colon measured by qPCR and normalized to Gapdh.

Figure 5. Schematic of hIL-22 secretion. Multiple copies of IL-22 fused to a secretion signal (SS) are integrated into the EcN chromosome. Removal of the p15A gene results in a Diffusible Outer Membrane (DOM) phenotype for enhanced secretion from EcN. B. ELISA assay comparing the effect of plasmid copy number, ribosome-binding site (RBS) and signaling peptide on hIL-22 secreted normalized to 1x10^7 CFU/3hrs. HRS, high affinity RBS C. IL-22 production from integrated strains containing 1, 2, or 4 copies of integrated hIL-22 with the cmpk signaling peptide. The 4-copy integrant is designated EcN-hIL-22.

Figure 6. A. hIL-22 is stable and biologically active in vivo. EcN-hIL-22 numbers decrease with time in naive mice with Strept in drinking water. B. At day 4, high levels of secreted hIL-22 are detected in the colon by ELSA. In colon tissue, in vivo target engagement of bacterially-secreted hIL-22 is detected as upregulation of the IL-22-dependent biomarker, RegIIIβ.

Engineering Synthetic Biotic Medicines To Secrete Human Proteins and Short Chain Fatty Acids as a Versatile Platform To Treat Inflammatory Bowel Disease

Analyse Reeves, Jenny Shu, Anna Sokolovska, Jorge Ticas, Chun- Chei Chao, Jillian Means, JR Gao, Catherine Monahan, David Lubbokowicz, Lauren Renaud, Mylene Perreault, Vincent Isabella, and David L. Hava

Synlogic Inc., Cambridge, MA, USA

Engineering EcN to produce Short Chain Fatty Acids

Figure 4. Mouse study design. 1x10^7 CFU EcN-Lac were gavaged into wild type mice daily for 3 days prior to anti-CD3 treatment. After 24 hrs, mice were sacrificed and colons were harvested. B. % of Foxp3+ Treg clones present in the colon. C. Gene expression in the colon measured by qPCR and normalized to Gapdh.

Development and characterization of EcN-hIL-22, an integrated hIL22 Secretion Strain

Figure 5. Schematic of hIL-22 secretion. Multiple copies of IL-22 fused to a secretion signal (SS) are integrated into the EcN chromosome. Removal of the p15A gene results in a Diffusible Outer Membrane (DOM) phenotype for enhanced secretion from EcN. B. ELISA assay comparing the effect of plasmid copy number, ribosome-binding site (RBS) and signaling peptide on hIL-22 secreted normalized to 1x10^7 CFU/3hrs. HRS, high affinity RBS C. IL-22 production from integrated strains containing 1, 2, or 4 copies of integrated hIL-22 with the cmpk signaling peptide. The 4-copy integrant is designated EcN-hIL-22.

HIL22 secreted by EcN induces IL22 dependent gene expression in vivo

Figure 6. A. hIL-22 is stable and biologically active in vivo. EcN-hIL-22 numbers decrease with time in naive mice with Strept in drinking water. B. At day 4, high levels of secreted hIL-22 are detected in the colon by ELSA. In colon tissue, in vivo target engagement of bacterially-secreted hIL-22 is detected as upregulation of the IL-22-dependent biomarker, RegIIIβ.