Reduction in Plasma Phenylalanine Levels in Patients with Phenylketonuria with Live Bacterial Therapeutic SYNB1618

Interim analysis from ongoing Phase 2 study

Jerry Vockley, George A Diaz, Dorothy Grange, Cary O. Harding, Nicola Longo, Hope Northrup, John A Phillips III, Shawn Searle, Janet Thomas, Roberto Zori, Sharon Ernst, Nicole McWhorter, Mesaki Ndugga-Kabuye, Kristina Humphreys, Casey Woodbury, William S Denney, Caroline B Kurtz, Aoife Brennan and Marja Puurunen

International Congress on Inborn Errors of Metabolism 21 November 2021

Jerry Vockley, M.D., Ph.D.

University of Pittsburgh

Cleveland Family Endowed Chair in Pediatric Research

Professor of Human Genetics

UPMC Children's Hospital of Pittsburgh

Chief of Genetic and Genomic Medicine

Director of the Center for Rare Disease Therapy

PKU: Significant Need Remains for New Treatment Options

Challenges

Significant risk for **neurocognitive impairment** if untreated

Extremely challenging diet with low compliance

Low response to current oral therapies: 80% fail to respond³

Most adult patients **out of Phe control** and difficulties in **executive function**

Substantial need for increased intake of natural protein

Mechanism of Action for SYNB1618, a Live Bacterial Biotherapeutic

Engineered Probiotic Bacteria: *E. coli* **Nissle** Components of Synthetic Genetic Circuit

Conversion of Phe into non-toxic metabolites

- PAL3 enzyme converts Phe to trans-cinnamic acid
- LAAD enzyme converts Phe to phenylpyruvate

Safety

 Δ dap: Auxotrophy – requires diaminopimelic acid (DAP) to grow

SynPheny-1: Phase 2 Proof-of-Concept Study for SYNB1618

Population	Efficacy Endpoints	Strict diet control
Adults with classic PKU Plasma Phe levels ≥ 600 µmol/L Not currently on sapropterin or pegvaliase-pqpz Stable diet history	 Fasting plasma Phe levels after low dose and high dose of SYNB1618 Labeled plasma D5-Phe AUC, after a meal challenge 	 Stable study diet Individualized diet plan to match baseline Phe intake 6-day diet run in prior to baseline to achieve steady state Continued diet control for 2 weeks after last dose

SynPheny-1 for SYNB1618: Phase 2 Study Design

Dosing

- Oral, 3 times/day with meals
- Days 1-3: 1e11 live cells TID
- Days 4-6: 3e11 live cells TID
- Days 7-13: 1e12 live cells TID
- On Days 14 & 15 a single dose of 2e12 live cells

Measurements

A Plasma D5-Phe AUC_{0-24hr} at baseline and on Day 14</sub>

Fasting Phe at baseline, after low dose (Day 7), after high dose (Day 14), and 2 weeks after cessation of dosing (Day 29)

Interim Analysis (n=9) for Synpheny-1: Baseline Characteristics

Category	Characteristics
Age	31.7 (10.8; 20-50) (mean, SD, range)
Gender	5 Female, 4 Male (55.6% fem)
	969 (435.5) umol/L (mean, SD)
Baseline Phe level	507 -1925 umol/L (range)
	1889 (2393) mg (mean, SD)
Baseline Phe intake	595-8200 mg (range)

D5-Phe Tracer Tracks Strain-specific Phe Metabolites TCA and HA

Interim Analysis: D5-Phe Absorption is Reduced by Treatment

Interim Analysis: D5 Phe Tracer Study (2e12 dose, N = 8)

- Meal challenge at Day -1 and Day 14 at high dose 2e12
- Phe load as D5-labeled and protein-bound unlabeled Phe

Mean (upper CI, Lower CI) reduction in D5-Plasma Phe AUC of -39.99% (2.7% -64.95%)*

4 of 8 patients experienced >40% D5 Phe lowering after meal challenge

Corresponding plasma D5-TCA and urinary D5-HA biomarker signal confirms strain activity

Similar reductions in labeled and unlabeled Phe levels post meal

Clear evidence of strain Phe metabolism from GI Tract

Interim Analysis: Mean "All-Comers" Results for Phe Reductions

- Rapid reduction of fasting Plasma Phe at 3e11 dose
- Mean "all-comers" fasting plasma Phe lowering at 1e12 dose met 20%
- Elevation of plasma Phe upon cessation of treatment

Interim Analysis: Phe Reduction for >20% Responders

Response defined as >20% reduction in Phe at either day 7 or day 14

Four subjects met this responder criterion in interim analysis

254 μM mean reduction in Phe in responder population (N = 4)

Safety and tolerability summary from interim analysis

Tolerability summary

No SAEs or systemic safety issues identified

Tolerability profile **consistent with experience** in healthy volunteers

Mild to Moderate GI AEs

1 discontinued (anxiety due to PKU)

Efficacy response and tolerability suggest individualized dosing and titration may be available to meet patient needs.

This will be **evaluated in future studies**.

Conclusions from the Interim Analysis of Synpheny-1, Phase 2 for SYNB1618

- SYNB1618 has **demonstrated ability to access Phe** from within the GI tract
- **40% reduction in D5-Phe** absorption after a meal challenge
- **20% reduction in fasting plasma Phe** across interim analysis population
- **254 μM mean reduction** in fasting plasma Phe among responders (>20% reduction)
- SYNB1618 was generally well tolerated, with **profile consistent with Phase 1 study**
- An optimized version of SYNB1618, SYNB1934 with improved Phe conversion potential has demonstrated Phe metabolism in healthy volunteers and will be evaluated in SynPheny-1 (abstract #569)

Development of live bacterial biotherapeutics as **novel modality for treatment of PKU** warrants further study in late-stage trials

Thank you to study patients and investigators!